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Bridging the Gap Between Image Coding for Machines and Humans
(ICIP 2022)
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Fig. 1. The overview of the finetuning scheme using Patch-
GAN discriminator. The dashed lines denote gradient back-
propagation flows and dotted boxes denote the parameters
getting updated by the optimizer. The green lines indicate
the data from the input of the ICM codec and the red lines
indicate the data from the output of the ICM codec.
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Fig. 2. The codec finetuned with PatchGAN (middle) effectively removes the checkerboard artifacts commonly found in the
decoded images of the NN-based convolutional codec such as the base model (left), while the codec finetuned with limited ad-
versarial impact (right) only mildly suppresses the artifacts. More examples available at: https://flysofast.github.
io/human-finetuned-icm/ .
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How Do Neural Spoofing Countermeasures Detect Partially Spoofed Audio?
(arXiv 2024)
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This work is interesting and novel, Iikelyi to be accepted.

This work is énot of sufficient value, un\ike\y: tobe acceptat:

Figure 1: Ilustration of partially spoofed speech changing the
meaning of a sentence.
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Table 2: RCQs (%) of SSL-Res1D models when predicting spoof and bona fide classes’ scores for partially spoofed samples, across five

different segment types. Models are trained on ASVspoof 2019 LA [38] or PartialSpoof [10]. The grey color represents the relative
size relationship among the values of the five types of segiments within each trial, with deeper shades indicating larger values.
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Table 3: RCQs (%) of five different types of speech segments for
misclassified partially spoofed samples with SSL-Res1D model.

Bona fide Spoofed Transition Bona fide Spoofed
Speech  Speech  Region  Non-speech Non-speech

Dev. 1222 -6.76 -19.89 -20.18
Eval. -10.42 -49.19 -28.16
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Language-driven Semantic Segmentation
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(ICLR 2022)

open-vocabulary segmentation task
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Figure 2: Overview. A text encoder embeds labels into a vector space. An image encoder extracts
per-pixel embeddings from the image and correlates the feature of each pixel to all label embeddings.
The image encoder is trained to maximize the correlation between the text embedding and the image
pixel embedding of the ground-truth class of the pixel. A final spatial regularization block spatially
regularizes and cleans up the predictions.
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Figure 1: Example results. LSeg is able to handle unseen labels as well as label sets of arbitrary
length and order. This enables flexible synthesis of zero-shot semantic segmentation models on the
fly. From left to right, labels that are removed between runs are underlined, whereas labels that are
added are marked in bold red.

~

3z



RRIZEKDBED THD. zero-shotDt I X > FT—> 3 UhElgEE B>TW3,

tree, grass, sky,
house, window, other

toy, grass

N oy H tree

B grass EEm grass
N sky
B house
Il other

(a) (b)

Figure 6: Failure cases.
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