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English follows Japanese
o Hayami

PNeRV: Enhancing Spatial Consistency via Pyramidal Neural Representation for Videos
(CVPR 2024)
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Learned Image Compression with Mixed Transformer-CNN Architectures
(CVPR2023)
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The designed architecture of image compressoin model

Transformer-CNN Mixture block (TCM block)
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Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering
(CVPR2024)
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V3.0_ C3 High-performance and low-complexity neural compression from a single image
or video

(CVPR2024)

C3 = COOL-CHIC®Dversion 3
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PNeRV: Enhancing Spatial Consistency via Pyramidal Neural Representation for Videos
(CVPR 2024)
Problems of NeRV = Good temporal consistency ; Bad spatial consistency

Proposed Methods
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1. Pyramidal NeRV
2. Kronecker Fully-connected (KFc) Layer: A refinement in upsampling

Traditional NeRV uses PixelShuffle (which redistributes expanded channel directions horizontally and
vertically) for upsampling

= Lacks the capability to model long-range relationships between pixels

Formula for KFc:
Z = CONCAT (Kg*’)x“')Kg“) +b. @by, @by,

X is the input feature, Z is the output feature, K{i) and Kéi)are two kernels for channel %, and b, by, b, are
three vectors that produce BIAS through the Kronecker product @

3. BSM: Method for fusing features between pyramidal layers

It fuses information while learning the importance of incoming information

e Tatsumi

2024/09/03 Multimedia Seminar Minutes



Learned Image Compression with Mixed Transformer-CNN Architectures
(CVPR2023)
Most of the existing LIC models are CNN-based or Transformer-based.
CNN is good at local modeling while transformer is good at non-local modeling.
Proposed method:
1. LIC framework with parallel Transformer-CNN Mixture(TCM) blocks

By placing residual networks and Swin-Transformer blocks in parallel, it achieves a balance between the
strengths of CNNs and Transformers while maintaining low complexity.
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The designed architecture of image compressoin model Teansformer-CNN Mixture block (TCM block)

2. Channel-wise auto-regressive entropy model with a parameter-efficient Swin-transformer-based attention
(SWAtten) module

* The SWAtten module itself uses fewer parameters compared to traditional attention modules.
* The attention module is placed in the hyper-prior path rather than the main path.

= Reduces model complexity.
o Takabe

Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering

(CVPR2024)

Due to aliasing, rendering of 3D Gaussian Splatting (3DGS) in low-resolution images does not work well
Proposed Method: Pixel coverage

Pixel coverage reflects the size of the Gaussian when compared to the pixel size at the desired resolution.
In other words, it calculates how much a Gaussian affects the given pixel at the desired resolution.

Simply filtering the pixel coverage at the Nyquist frequency would only eliminate small high-frequency Gaussians,
resulting in missing parts in the image.

Therefore, first, for each resolution (pixel size), create large Gaussians by aggregating the small Gaussians in
each voxel below the pixel coverage threshold, and then enlarge by the pixel coverage multiplier.

(This aggregates only less than 5% of the Gaussians.)

\

Select Small Gaussians
in Voxel
Sk < St

Aggregate as Enlarge by
Average Gaussian St/Sk

Include the newly created larger Gaussians in the training.
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When rendering, the resolution and size of the Gaussians are considered to decide which Gaussians to use.
* Use newly created large Gaussians instead of high-frequency components at low resolutions.
» Use high-frequency components directly at high resolutions, not the newly created large Gaussians.
Results
As the resolution decreases, both quality and processing speed improve significantly compared to 3DGS.
However, the rendering speed does not decrease linearly.

(Because when rendering, any Gaussian that even slightly affects a pixel must be included in the calculations.)

e Tanaka

V3.0_ C3 High-performance and low-complexity neural compression from a single image
or video

(CVPR 2024)
C3 = COOL-CHIC version 3

Quantizing the latent variables using a rounding function results in quantization noise, which is a non-
differentiable function like a step function, and thus cannot be directly used for learning. Therefore, the traditional
COOL-CHIC added uniform noise over the range of quantization noise to make it differentiable.

Proposed Method

In the early stages of learning, slight variations in input data can cause significant quantization errors, making
gradients unstable and learning difficult, so a wide range of quantization noise is used.

Gradual approximation of quantization is then performed.
* Smoothly approximate noise using a differentiable soft rounding function.

o Adjust the T value of the soft rounding function and the kumaraswamy distribution to narrow the range of
kumaraswamy noise, approximating it to the rounding function.

Compared to simple uniform noise, this allows for a smoother quantization approximation and accurate decoding.

2024/09/03 Multimedia Seminar Minutes



